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Inverse avalanches in the Abelian sandpile model
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We define and study the inverse of particle addition process in the Abelian sandpile model. We show
how to obtain the unique recurrent configuration corresponding to a single particle deletion by a se-
quence of operations called inverse avalanches. We study the probability distribution of s,, the number
of “untopplings” in the first inverse avalanche. For a square lattice, we determine Prob(s,) exactly for

s1=0, 1, 2, and 3. For large s,, we show that Prob(s,) varies as s,

;1173 In the direct avalanches, this is

related to the probability distribution of the number of sites which topple as often as the site where the
particle was added. These results are verified by numerical simulations.

PACS number(s): 05.40.+j

The Abelian sandpile model (ASM) is a probabilistic
cellular automaton model which has attracted a lot of at-
tention in recent years. The model was proposed by Bak,
Tang, and Wiesenfeld as a simple discrete model to illus-
trate the concept of self-organized criticality [1]. The
most attractive feature of this model is that the operators
corresponding to sand grain addition at different sites
commute, and this property enables the analytical deter-
mination of many of the properties of this model [2].
These include the characterization of the critical steady
state, the two point correlation function, and the spec-
trum of relaxation times. In the case when there is a pre-
ferred direction of particle transfer (to take into account
the presence of an external field like gravity), the model is
in the universality class of the well studied voter model.
This case has been solved exactly, and it was found that
the model has upper critical dimension 3, and all the crit-
ical exponents describing avalanche size distribution have
been determined in all dimensions [3].

For the undirected case, the problem has been solved
exactly only on the Bethe lattice [4]. The most often
studied case is the two dimensional square lattice, both
by simulations [5,6] and theoretically. In this case, using
the general equivalence of ASM’s to the ¢ —0 limit of the
g-state Potts model, and known values of exponents from
conformal field theory, all the exponents can be expressed
in terms of one unknown exponent [7]. Only recently has
it been possible to calculate the fractional number of sites
having different heights in the steady state in two dimen-
sions [8]. It is also known that correlations between sites
with minimum allowed height vary as » ~* in the critical
state, where 7 is the separation between sites, in the bulk,
and on the surface [9,10]. However, so far it has not been
possible to relate any of the exponents referring to distri-
bution of sizes of avalanches to known exponents. The
present paper is an effort in this direction.
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In an earlier paper we have shown that there exists a
one to one correspondence between the recurrent
configurations of ASM and the spanning tree
configurations on the same lattice [7]. The equivalence
between these problems implies that all critical exponents
defined in the spanning tree problem would have corre-
sponding exponents in the ASM case. For example, the
fractal dimension of chemical paths on the spanning tree
is related to the way the duration of avalanches scales
with their linear size [7]. If from a spanning tree we
delete a bond at random, the probability distribution of
the number of sites disconnected is known to have power
law tails. In two dimensions, this probability varies as
s 178 where s is the number of sites disconnected [11].
In this paper we show that the exponent in the ASM case
that corresponds to deleting an edge in the spanning tree
problem is related to the process of removing a particle in
the sandpile. To get back a recurrent configuration, we
have to perform a number of operations called inverse
avalanches. We study the statistics of the size of the first
inverse avalanche denoted by s; and show that it can be
calculated exactly for small s,. For large s,, Prob(s,)
varies as s; !!/8. We show that the same exponent
characterizes the distribution of the number of sites
which topple as often as the site where the particle was
added in a direct avalanche. These results are verified by
numerical calculations.

We consider the ASM on a lattice with N sites, the top-
pling rules being given by an N X N integer matrix A. In
the following, we shall assume that A is a symmetrical
matrix. Let C be a recurrent configuration of the pile,
and C, denote the recurrent configuration obtained by
adding a particle at site i to C and relaxing the pile. If g,
denotes the operator corresponding to particle addition
at i, we get

C;=a,C . (1)

We have shown earlier that the operators {a;},i =1 to
N, form an Abelian group under multiplication [2]. In
particular, over the space of recurrent configurations,
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operators a;,” ! are well defined operators.

Given a configuration C;, we can obtain the
configuration C =a,-_'Cf as follows: Let the height of
the sandpile in C; at site j be z;. We write

Cr=1{z;} . (2)
We decrease the height z; by 1 and call the resulting
configuration C':

C'={z;—8;} . 3)

We can check if C' is recurrent by using the burning al-
gorithm [2]. For ASM models where A is not a symme-
trical matrix, the burning test is not sufficient to ensure
recurrence [12]. Since we are restricting ourselves to
symmetric A, we shall not discuss the modifications
necessary in this algorithm to make it applicable for non-
symmetric A. If C’ is recurrent, then by the uniqueness
of the inverse, C =C’. If not, it must contain a forbidden
subconfiguration (FSC). An FSC is an assignment of
heights to a subset of all sites of the lattices, which can-
not appear in the steady state of the ASM. For example,
if there are two sites a and B such that A g=Ag,=—1,
then it is easy to see that any configuration with
z,=zg=1 cannot appear in the steady state of the ASM,
and z,=zz=1 is an FSC. For a general definition, see
Ref. [2].

Let the FSC in C’ be denoted by F,. Define “untop-
pling” at site j by the operation

Zp —Zy +Ak] . (4)

Clearly, untoppling is an inverse of the toppling. We un-
topple once at each site in F, and call the resulting
configuration C”’. Now we check if C" is recurrent. If
so, then C =C"'. If not, then it contains an FSC; call it
F'"". We untopple once at all sites in F'’. Call the result-
ing configuration C'”’. And then test of recurrence of
C'’,..., and so on, until a recurrent configuration is
reached, and the process stops.

We call this process the inverse avalanche process, and
untopplings at F,F,,..., etc., are called the first,
second, etc., inverse avalanches. The number of untop-
plings in an inverse avalanche will be called its size. Thus
the size of the first inverse avalanche is the number of
sites in F,. In the following, we shall represent it by s;.

In general, s; is the size of the ith inverse avalanche.
J

Prob (S,=2) = 4Prob ([2l]) = 0.041324
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It is easy to see that if adding a particle at i in C gives
rise to n; topplings at a site j before the stable
configuration C; is reached, and deleting a particle at i
from C;, the number of untopplings at j is 7;, then we

have
n; = ’Tj (5)

for all j. In particular, if there are a total of s topplings in
going from Cto C;, we have

s=s;ts,+ts3+ . (6)

It turns out that calculating the statistical properties of
the random variable s, is much easier than calculating
those of s. For concreteness, we restrict ourselves to a
two dimensional square lattice in the following. We as-
sume a lattice of size L XL with L large, and open
boundary conditions. The heights at sites take values 1
to 4. If the height at any site exceeds, it topples, and the
height decreases by 4, while the height at each nearest
neighbor increases by 1.

Let Prob(s,=r) denote the probability that, in the
steady state of the ASM, removing a particle from a ran-
domly selected site causes a first inverse avalanche with
exactly r untopplings. Clearly, Prob(s; =0) equals the
probability that no toppling occurs when we add a parti-
cle at a random site 7 in the critical state 4 ASM. Thus
we get

Prob(s,=0)=1—Prob(z;=4) . (7

The right-hand side has been calculated by Priezzhev [8].
Now consider the case s;=1. This can occur only if
z;;=1. Hence we get

Prob(s; =1)=Prob(z;;=1)

2
o

=2 ~0.073636 , 8.1)
m

using the known result of height probabilities [8,9].

Calculating Prob(s; =2) is not much harder. In this
case F; must have only two sites, and the only possibility
is two adjacent sites with height 1 each. Hence we must
have z;,=2, with one of the four neighbors of i/ having
height 1. We thus get

(8.2)

where we have used obvious notation for the probability that, in the self-organized critical state, the preselected cluster
of sites has the height subconfiguration shown, and used the earlier calculated results of Ref. [9].

For any finite value of s;, there are only a denumerable number of FSC’s, and the probabilities of each
subconfiguration can be calculated as determinants of finite matrices using the method described in [9]. Thus we get

Prob (S;=3) = 6 Prob ( ZI2II ) + 12 Prob () (8.3)
Prob ( S,=4) = 8 Prob ( EIZIZ[) +32 Pfob( )+16 Prob ()
+16 Prob ( offf ) + 16 Prob (Bl ) - (8.4)
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We note that a similar series is encountered in calculating the probability that on deleting a bond at random in a
spanning tree, exactly s, sites get disconnected [11]. For example, one gets

Prob (Se=1) = 4 Prob (@)

Prob (Sc=2) = 12 Prob (&)

Prob (S¢=3) = 16 Prob (220 ) + 32 Prob ( )

9.1

9.2)
9.3)

Prob (Sc=4) = 20 Prob (21 ) + 80 Prob()+40 Prob(EEB)

+ 40 Prob (i fZ") +32 Prob (BfY)

Comparing Eq. (8) with Eq. (9), we see that while the
terms are the same, the coefficients of the graphs are
different. In calculating Prob(s;=r), we sum over all
FSC’s of r sites such that a specified site in the FSC, and
at its boundary, while in calculating Prob(s, =r), we sum
over all FSC’s in which a given bond is a boundary bond
of an FSC. However, the number of boundary sites of an
FSC is a linear function of the number of boundary
bonds. Hence, for large r, we expect that

Prob(s,=r)=K Prob(s,=r) , (10)

where K is a finite constant less than 1. In two dimen-
sions, Prob(s, =r) varies as r ~!1/® for large r. Hence, we
get

Prob(s,=r)~r 11/ (11)

for large r. There is a more direct, but approximate, rela-
tionship between the properties of the conventional
“direct” avalanches initiated by adding particles, and the
first inverse avalanche defined here. Let n be the number
of times site i topples in going from C to C; in Eq. (1).
Then it is known that all sites that topple at least j times
in the avalanche form a compact cluster with no holes
[6]. Let us call this cluster T;. Then the simplest possi-
bility consistent with Eq. (2) is that

T,=F,,,_; for1=j=n. (12)

Experimentation with small systems shows that this is
usually true. (Its general validity was erroneously
claimed in [2].) However, there are exceptions. One sim-
ple example is shown in Fig. 1. In our simulations, we
have found that s,#s,,, in approximately 8% of the cases
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FIG. 1. An example where 5,75, on a 4X4 lattice. A parti-
cle is added at the hatched site in a configuration shown in (a).
The final configuration is shown in (b). It is easy to see that in
this case the four central sites topple twice, so s,,=4. But
s, =5.
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FIG. 2. Loglog plot of Prob(s, =s) (circles) and

Prob(s, =s) (triangles) vs s. The data are for 128 000 avalanches
on a lattice of size 513 X513.
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FIG. 3. Log-log plot of Prob(s,,, =x) vs x for lattices of three
different sizes: L =129 (circles), 257 (triangles), and 513
(squares). Each data point is averaged over > 10° avalanches.
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(here mt denotes maximum toppling; s,,, is the number of
sites that topple the maximum number of times in a given
avalanche). Even though s, and s,,, are not always equal,
it is reasonable to argue that on the average they scale
similarly, and hence

Prob(s,,, =r)~r 118 (13)

for large r.

We have verified these conclusions by numerical simu-
lations. In Fig. 2 we show the frequency distribution of
the inverse avalanche by size. To minimize boundary
effects, we dropped a particle at random and each tenth
particle was dropped on a small 3X 3 square in the center
of the square. We collected statistics for the particles
dropped on the central square. The data for s; was
binned so that the ith bin contains data for a; <s; <b,,
where a;=b;_,;+1 and b, is the integer part of 6a;/5.
We have plotted the averaged frequency distribution
against the midpoint value of the bin interval, calculated
from a data of 128 000 avalanches. On the same graph,
we also show the frequency distribution of s,,,. It is seen
that the experimental distribution for s, is very close to
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that for s,,, except for very large values of s;, where
Prob(s, ) shows stronger finite size corrections. However,
even for r =4, Prob(s, =r) differs from Prob(s,,, =r) by a
fraction of 1%. In the middle range 10 <r <1000, both
graphs have a linear segment, and the numerically deter-
mined slope is 1.3710.03, which is quite consistent with
our theoretical prediction. In Fig. 3 we have plotted the
frequency distribution for s,, for lattices of three
different sizes L =129, 257, and 513. This is based on
samples of 10%, 1.03 X 10°, and 1.28 X 10° avalanches, re-
spectively. Graphs for smaller sizes show substantial cur-
vature, but for the largest sizes, we get the slope value
quoted above. The error bars are our subjective estimate
based on the goodness of fit in the scaling range.

Calculating the statistics of second, third, etc., inverse
avalanches is a difficult problem, of which we have little
theoretical understanding. Another question which is in-
triguing is formulating the precise relationship between
the sets F; and T;, and explaining why the relationship
(12) holds in a large majority of cases, but not always.
We hope that future studies will throw some light on
these questions.
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FIG. 1. An example where 5,5s5,,, on a 4 X4 lattice. A parti-
cle is added at the hatched site in a configuration shown in (a).
The final configuration is shown in (b). It is easy to see that in
this case the four central sites topple twice, so s,,=4. But
§;=5.



